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ABSTRACT 

We have utilized a mapping of the lateral and anisotropic variations in Pn velocities beneath continents 
across the globe (Smith and Ekstrom, 1999) to predict travel times of P-wave propagation at distances of 2- 
14 degrees. At such distances the phase Pn is the seismic phase that is most frequently reported and that 
thus controls the location accuracy. This is important in CTBT applications as many events of interest are 
only detected at these distances. We have thus worked on reducing the systematic errors in Pn travel-times 
and the resulting seismic event location at regional distances using our mapping. 

In our investigations we have used a list of ground truth events by which to test locations using our 
different models. In establishing this list we have endeavored to include a variety of geographic areas and 
sizes of events. We have also developed a grid-search algorithm to relocate each of these events using 
isotropic, laterally varying, and full anisotropic models. Ray-path effects were also investigated and proven 
to be insignificant at current model resolutions. Our results indicate a progressive improvement in the 
relocation with increased model comp1e:tity. However, significant systematic errors remain in locations 
where heterogenity is accounted for but anisotropy is not. The most significant results appear to be for 
events with few stations reporting but with reasonable azimuthal distribution. Larger improvements are 
observed in tectonically active regions where the Pn models are better resolved. For CTBT purposes this 
improvement could therefore be of significant political importance. 

KEY WORDS: Pn, anisotropy, regional phases, CTBT, relocation 

OBJECTIVE 

Introduction 

In CTBT applications many events of interest are only detected at regional distances. Our objective is 
identification and reduction of systematic errors in the location of events determined using regional seismic 
data. At such distances (2-14 degrees) the phase Pn is the seismic phase that is most commonly reported and 
which thus controls the location accuracy. In order to accurately locate seismic events, whether natural or 
artificial, by traditional travel-time methods one must first be able to accurately predict arrival times. 
Historically travel-times have been calculated using one-dimensional seismic velocity models (e.g. Jeffreys 
and Bullen, 1940; Herrin et al., 1968; Herrin and Taggart, 1968; Herrin, 1968; Dziewonski and Anderson, 
1981; Kennett and Engdahl, 1991). However, the Earth is composed of rocks which vary laterally at 
varying length scales (e.g. Crosson, 1976; Engdahl et al., 1977, 1982; Engdahl and Billington, 1986; 
Dziewonski, 1984; Su and Dziewonski, 1993) and can be anisotropic (e.g. Christensen, 1966; Kumazawa 
and Anderson, 1969; Hess, 1964; Raitt et al., 1969; Forsyth, 1975; Tanimoto and Anderson, 1984), 
resulting in travel-times which do not match those predicted by these one-dimensional velocity profiles. In 
addition, at regional length scales global Earth models, which are largely based on long-period surface 
waves and vertically arriving body waves, provide poor first arrival travel-time predictions. Providing more 
accurate prediction of P-wave propagation at regional distances is therefore of particular importance in 
event location. When attempting to satisfy the location requirements of the CTBT it is essential to obtain 
the most accurate location possible, with the minimum necessary computing time 

The question remains as to whether the current generation of regional models can usefully contribute to 
relocation problems. While it has already been well established that variations in regional phases such as 
Pn can lead to large mislocations of the epicenter (Herrin and Taggart, 1962), progress has been slow in 
routinely applying regional models to locations for global catalogs. This is probably because most of the Pn 
velocity models produced are of a highly local nature (e.g. Hess, 1964; Raitt et al., 1969; Bamford, 1977; 
Fuchs, 1977; Hirn, 1977; Vetter and Minster, 198 I), and no systematic global mapping of Pn velocities has 
been attempted. In addition although azimuthal anisotropy is a known feature of Pn propagation (e.g. 
Beghoul and Barazangi, 1990; Hearn, 1996), most previous studies of Pn anisotropy have not mapped 
lateral variations in azimuthal anisotropy, but instead produced, if anything, a single estimate for an entire 
region. 



In recent work the P.I. has mapped lateral and anisotropic variations in Pn velocities beneath continents 
across the globe (Smith and Ekstrom, 1999). This work represents the most comprehensive and possibly 
the most accurate mapping of anisotropic Pn velocities available to date. This provides the first opportunity 
to truly test the possibility of applying an anisotropic Pn velocity model to calculation of travel-times to 
improve regional locations for events distributed in different parts of the world. The question remains 
whether this new mapping can provide, in a practical application, significant reductions in systematic event 
location at the regional scale. Our work is aimed at applying this new mapping of Pn anisotropic structure 
to investigate the possible systematic errors produced by lateral heterogeneity and azimuthal anisotropy 

RESEARCH ACCOMPLISHED 

Grid Search Relocation Algorithm 

We began our study by developing and applying a grid search relocation algorithm to ground truth events. 
In this study we use travel-time data from the ISC database. The ISC location is used as a first estimate. 
The fit of travel times is then calculated for this location and for a set of points on a rectangular grid at 10- 
km spacing. The minimum in the rms of the travel times is then selected as the new location estimate and 
the travel-time rnistits recalculated using a smaller grid spacing. This is repeated until the travel-time 
misfit appears to converge. This procedure has been performed for a selection of PNE for isotropic, 
laterally heterogeneous, and anisotropic structures. In this stage of our study great-circle raypaths were 
used. 
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Figure 1 World.rvide distribution of l'n velocity estimates in the model of Smith and Ekstrom (1999). 
Triangles show the locations of PNEs used in Smith and Ekstrom (1996). 

Figure 1 shows the worldwide distribution of Pn velocity estimates in the model of Smith and Ekstrom 
(1999). Triangles show the locations of PNEs used in Smith and Ekstrom (1996). We have used this same 
list of PNEs as a starting list of ground truth events for the current study. Clearly the geographic area with 
the best coincident coverage of PNEs and Pn velocity estimates is the United States. Although we are 
continuing to expand our list of test events the events in this region provide useful insight into effects of our 
model and algorithm (see Figure 2). Pn anisotropy for this region is shown in Figure 3. 



Figure 2 shows the US distribution of Pn velocity estimates in the model of Smith and Ekstrom 
(1999). Triangles shotv the locations of PNEs used in Smith and Ekstrom (1996). 

Table 1 shows the RMS misfit using isotropic, laterally heterogeneous, and anisotropic models. Although 
this table suggests a general location improvement using the anisotropic structures we note that the majority 
of this improvement is seen in the locations for the western most events. This is explicable by examination 
of Figures 2 and 3 which demonstrate that for the eastern most event all regional arrivals are from similar 
azimuths, and so the 3 models converge to the same answer. It is notable that these improvements are 
minimal and given the liminted test-bed perhaps not statistically significant. Possible explanations for this 
minimal level of improvement are in use of direct raypaths as opposed to calculating the true raypath 
predicted by our mddel, and also dependence on the drustal mobkl. 

Table 1: Results of relocation using different velocity models 

Model 
isotropic 

- 

heterogeneous 

Table 2 shows the results of experiments where we have relocated the events but only using travel-times 
from more distant'stations (> 6 degrees). Although this reduces the number of travel-times the significance 
of accounting for correct uppermost mantle velocities increases. 

RMS Misfit to Known Location (krn) 
12.1 
11.6 

Table 2: Results of relocation using different velocity models and restricting distance range to 
arrivals > 6" 

anisotropic 

Model 
isotropic 

heterogeneous 
anisotropic 

10.9 

- 

RMS Misfit to Known Location (krn) 
14.1 
13.8 
11.4 



Figure 3 Pn anisotropy estimates in the US. Arrows show the fast anisotropic direction and a re  
proportional to the size of anisotropy. A 4% arrow is shows for scale. 

Investigation of Ravpath Effects 

We also developed and tested methods to quantify the effect of anisotropic velocity variations on raypath 
deviations from the great-circle path and the subsequent effect on Pn travel times. In this part of the work 
raypaths were allowed to deviate in the horizontal plane away from the great-circle path but not in the 
vertical plane. This limitation was imposed as a reflection of both the model and reality: if the wave were 
allowed to dive it would no longer be a E'n arrival but instead a diving wave, and as the model had no 
gradient in the vertical direction there was no physical basis for inferring deviations from the horizontal 
plane. Of course some deviation will exlst in the real world due to slight moho variations and the existence 
of strong velocity gradients in some regions. Initial raypaths were calculated as being along the great circle 
path and then a 'bending' algorithm applied where the ray was allowed deviate from the great-circle path if 
small deviations allowed a faster route. Travel-times were then calculated using these new raypaths and the 
relocations repeated using them. 

In practice the bending only produced occasional, and small deviations from the great-circle path. This may 
in part be due to the resolution of the model compared to the overall pathlength of Pn. The Pn velocity 
model is constructed from measurements with resolution of 1.5-3 degree radius caps and therefore a 
diameter of 3 to 6 degrees. Pn only propagates from 2-14 degrees and to avoid diving rays we have limited 
our Pn to 11 degrees distance. The relative resolution therefore may be limiting our ability to accurately 
reproduce strong raypath effects. 

A second considerat1011 is that even when a range of raypaths at a particular azimuth did show strong 
deviations due to the large number of raypaths included in the relocations the overall relocation was rarely 
affected to a great degree. The statistical analysis of the relocations using non-great-circle path raypaths is 
shown in the table below. Clearly a much stronger effect is noted from introduction of the anisotropic 
model on overall velocity and travel time rather than with raypath effects. 



Table 3: Results of relocation using different velocity models 

Model 
isotropic 

heterogeneous 
Anisotropic with Ray bending 

In the final part of our investigation we expanded our list of ground truth events to incorporate earthquakes 
that had been well located (Kennett and Engdahl, 1991). This produced some interesting results. Although 
the relocation improvement provided by incorporation of an anisotropic velocity model was limited for the 
preliminary list of nuclear explosions the improvement not only remained, but increased for earthquakes. 
The explanation for this is two-fold. First, our model shows the strongest variations in anisotropy and the 
greatest magnitude of anisotropy near actively defoming regions. Thus it is not surprising that for these 
regions, where earthquakes characteristically happen, as opposed to continental interiors where the majority 
of nuclear tests occur the accurate mapping of anisotropy becomes more important. The second reason is 
due to sampling. Where a great many events have appeared in the past our anisotropic Pn models are 
inevitably better constrained than where we have much more limited data and they therefore do a better job 
of predicting travel times and providing relocations in these regions. The table below shows the statistical 
comparison of relocations for isotropic, laterally heterogeneous, and anisotropic (non-great circle path) 
models. 

RMS Misfit to Known Location (km) 
12.1 
11.6 
10.9 

Table 4: Results of relocation using different velocity models for earthquake events 

Model 
isotropic 

heterogeneous 
Anisotropic with ray bending 

Our current study clearly indicates that i~lclusion of more precise models, incorporating both heterogeneity 
and anisotropy at the regional scale, can improve the location accuracy. In continental interiors, the 
improvements obtained are not as striking as one might expect given the level of anisotropy and 
heterogeneity in the current models. However, near plate boundaries where anisotropic variations in Pn are 
noted to be at their most variable and highest magnitude the inclusion of anisotropic velocity models gives 
significant improvements. 

RMS Misfit to Known Location (krn) 
17.3 
16.8 
11.2 

Use of approximate raypaths as opposed to calculating the raypaths predicted by our model does not appear 
to give significantly different results on average. However, their remains a possible source of error in the 
calculation of the crustal leg of the traveltime. At greater distances this portion of the travel time becomes a 
less significant percentage of the overall traveltime and this is reflected in the increased significance in the 
improvement obtained at when considering longer raypaths.. In addition both the distribution of Pn velocity 
estimates available, and the azimuthal distribution of travel-times for the event being tested appears to have 
a critical effect on the improvement possible. 

In conclusion it seems that the new anisotropic models can provide improvements in event location. 
However, at current model resolutions the improvement is likely as large for approximate great-circle paths 
as for the computationally more intensive situation of non-GCP raypaths. When locating events where the 



raypaths are closer to actively deforming regions the models are better and the anisotropic signal stronger 
and thus even greater improvements in relocation are seen. Many of the countries currently developing 
nuclear weapons are in such tectonic regions and so application of anisotropic corrections may be of 
significant importance in a CTBT context. 



Conclusion of Work 

All work has been completed as outlined in the 'Statement of Work' initially proposed in the contract 
These are expanded on in the same itemization order below. 

1 .A list of historical events for which "ground truth" has been determined by non-seismological data was 
established and these events used in the analysis of this approach. The events largely consisted of 
nuclear explosions as used by Smith and Ekstrom (1996). 

2.Pn arrival times for the above dataset were extracted from the ISC catalog with obvious outliers, 
misidentifications and timing errors discarded. 

3.A grid search algorithm was developed and applied to these events using the Pn velocity model. 
4,Relocations were performed using isotropic, laterally heterogeneous and anisotropic Pn velocity models. 
5.Derived and ground truth locations were compared to identify systematic relocation differences 
G.Comparison of the different locations showed that the anisotropic model provided the best location over 

other velocity models. 
7.Raypaths were allowed to vary from sl~aight line raypaths and the effects on travel times examined. 
8.The travel-times based on these raypaths were then used to perform new relocations 
9.Comparison of the different locations showed similar results to earlier: that the anisotropic model 

provided the best location over other velocity models. 
10.Use of newer "ground truth" events eg the earthquake data-set of Kennett and Engdahl (1991) was 

incorporated as much as possible. 
11 .Assessment of the practicality of this application was performed given the relative improvements 

provided to the increased time needed to incolporate such calculations in standard relocation work 



ContractualIAdministrative actions: 

No changes in personnel, organization or operational methods occurred during the fulfillment of this 
contract. Dr Smith was promoted to Senior Research Staff but shortfall in salary from the new salary level 
was covered via alternative sources from within the University with no detrimental affect in time or effort 
on the current contract. 

Properties Acquired: 

No properties were acquired. 

Travel 

Travels covered under the entire contract included trips to the annual Seismic Research Reviews conference 
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on this contract since the last report. 

Reports, Articles and Presentations 

Presentation of this work has been made at various of the annual Seismic Research Reviews conference by 
Dr Smith 
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This is the final report for reporting on this contract. All items of the original statement of work have been 
completed as outlined earlier (see section Concl~lsion of Work). No further work is scheduled or planned 
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Other Activities 

Dr Smith's time has been covered at 50% by the DTRA contract. His other 50% has been covered under 
NSF contracts developing new understanding and mappings of anisotropy and its effect on raypaths and 
travel times. This other research has resulted in significant synergistic contributions to the current study of 
the effect of anisotropy on regional locations. 

Finances 
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